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The complex mode superposition method for the dynamical analysis of a simply
supported beam with two rotational viscous dampers attached at its end is presented. First,
a numerical procedure for the evaluation of complex frequencies and modes of vibration
has been worked out. Second, the appropriate orthogonality conditions have been
established in order to decouple the equation of motion. The complex mode superposition
method has then been used for the dynamic analysis in the time and frequency domains.
Finally, some numerical applications, under impulsive and harmonic transverse
accelerations of both ends, have been reported in order to illustrate the effects of the
dampers on the response amplitude.
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1. INTRODUCTION

Dampers are frequently used in the design of structures under dynamic and seismic
excitations. These devices are employed not only in the field of vibration isolation, but also
in that of the passive and active control of the dynamic response. Their aim is to dissipate
part of the vibration energy and for this reason they lead to a reduction in the response
amplitude.

In the dynamic response analysis of systems with viscous dampers it should be taken
into account that, due to the presence of such devices, the damping is non-classical [1].
As a consequence, the dynamic analysis cannot be carried out by the standard mode
superposition method. In fact, natural frequencies and modes of vibration are complex and
the equations of motion have to be decoupled in the complex domain.

This technique has been clearly stated for discrete multi-degree-of-freedom systems and
the physical meaning of all of the elements that define the solutions has been elucidated
[1]. This method has recently been extended, by two of the present authors, to distributed
parameter systems, in the study of two simple models for dynamic soil–structure
interaction [2–4].

However, the applicability of the complex modal analysis for distributed parameter
systems is limited by the lack of general procedures for the evaluation of complex
frequencies and modes of vibration. For a longitudinally vibrating cantilever beam with
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a viscous dashpot attached at its free end, the complex frequencies and modes of vibration
can be evaluated in closed form [5, 6]. For such a system a method for the dynamic analysis
based on the use of complex modes of vibration has also been proposed [6]. Some results
in terms of complex frequencies and modes have also been provided for flexural vibrating
beams with general end conditions [7], but without explicit directions about the numerical
procedures used for their evaluation.

The aim of this paper is to apply the complex mode superposition method to the
dynamic analysis of a Bernoulli–Euler simply supported beam with two rotational viscous
dampers attached at its ends.

For this system a numerical procedure for the evaluation of complex frequencies and
modes of vibration has been developed and the orthogonality conditions, which allow the
decoupling of the equation of motion in terms of principal co-ordinates, have been derived.
A parametric study has then been carried out in order to investigate how the natural
frequencies depend on the dynamic characteristics of the system. Subsequently, some
numerical applications, under impulsive and harmonic transverse accelerations acting
simultaneously at both ends, have been reported and a comparison has been made with
the response of the same beam without dampers. Finally, it has been shown how, by
selecting appropriately the properties of the beam and the dampers, a considerable
abatement of the structural response can be obtained.

2. THE STRUCTURAL SYSTEM

The system under investigation is composed of a uniform simply supported
Bernoulli–Euler beam with two rotational viscous dampers, with damping constant c,
attached at its end, see Figure 1. The beam has length L, mass per unit length m and
flexural rigidity EJ.

3. THE GOVERNING EQUATIONS

The governing equations of the present problem are the equation of motion for the
Bernoulli–Euler beam and the corresponding boundary conditions. For vertical ground
excitations the equation of motion takes the form

EJ 14v(z, t)/1z4 +m 12v(z, t)/1t2 =−m 12vg (t)/1t2, (1)

where v(z, t) is the vertical displacement and vg (t) represents the ground vertical
displacement. The boundary conditions at the two ends of the beam are defined in terms
of displacements and bending moments as

v(0, t)=0, v(L, t)=0, (2a, b)

M(0, t)=−c 12v(0, t)/1z 1t, M(L, t)= c 12v(L, t)/1z 1t. (3a, b)

where

M(z, t)=−EJ 12v(z, t)/1z2. (4)

Figure 1. The structural system.
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For harmonic motions the end moments and rotations may be written in the forms

M(0, t)=−MA exp {ivt}, M(L, t)=MB exp {ivt},

8(0, t)=8A exp {ivt}, 8(L, t)=8B exp {ivt}, (5a–d)

where, MA , MB , 8A and 8B are positive when the direction of rotation is counterclockwise.

4. DYNAMIC STIFFNESS MATRIX

The dynamic stiffness matrix for the simply supported beam may be derived from the
equation of motion (1) and appropriate boundary conditions through standard methods
of structural dynamics [8] in the form

$MA

MB%=
EJ
L $aā ā

a%$8A

8B% (6)

where

a=
sin b cosh b−cos b sinh b

1−cos b cosh b
b, ā=

sinh b−sin b
1−cos b cosh b

b, (7a, b)

are stiffness coefficients which depend on the frequency parameter b= aL, in which

a4 = (m/EJ)v2. (8)

In the case of the beam with dampers, since for harmonic motions

$MA

MB%=−ivc$8A

8B%, (9)

one obtains

$00%=
EJ
L $a+imb2

ā

ā

a+imb2%$8A

8B%, (10)

where m= c/LzmEJ is a structural parameter. Therefore, the dynamic stiffness matrix
takes the form

K=
EJ
L $a+imb2

ā

ā

a+imb2%, (11)

where the term imb2 accounts for the viscous damper effects.

5. NATURAL FREQUENCIES

The natural frequencies of the system are obtained by setting to zero the determinant
of the dynamic stiffness matrix. This condition provides the two equations

a3 ā+imb2 =0, (12)

where the frequency parameter b2 is complex in general. By setting

b2 = p+iq, (13)
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simple algebraic manipulations lead to

(A3B− mq)+ i(C3D+ mp)=0, (14)

where A, B, C and D are real functions of p and q, the expressions for which are reported
in Appendix A. The natural frequency parameters of the system are given by the values
of p and q, which are simultaneously solutions of the real and the imaginary part of
equations (14). This condition leads to the following two systems of equations

6A−B− mq=0
C−D+ mp=07, 6A+B− mq=0

C+D+ mp=07. (15, 16)

By analogy with the simply supported beam, for which the odd frequencies are given
by the equation a− ā=0 and the even ones by the equation a+ ā=0, the couples
( pn , qn ) which are solutions of the system (15) correspond to the dimensionless natural
frequencies of odd order, while the couples ( pn , qn ) which are solutions of the system (16)
correspond to the even order ones. Because the functions A, B, C and D are even in p,
if the couple ( pn , qn ) is a solution of the system (15) or of the system (16), so is the couple
(−pn , qn ). The complex natural frequencies are, then, given by the relationship

vn = b2
n zEJ/mL4 = (2pn +iqn )zEJ/mL4. (17)

By considering the modulus

=vn ==z( p2
n + q2

n )EJ/mL2 (18)

and defining the modal damping ratios

jn = qn /z( p2
n + q2

n ), (19)

the natural frequencies may be written as

vn = =vn = (2z1− j2
n +ijn ). (20)

The real part of vn therefore has the physical meaning of the damped natural frequency
of a single-degree-of-freedom viscous linear system with natural frequency =vn = and
damping ratio jn . Due to its dependence on the damping parameter qn , the natural
frequency =vn = is not equal to the natural frequency of the corresponding damped system
and, for this reason, is termed the nth pseudo-undamped natural frequency [1]. It should
be noticed that the damping parameter

qn = jn =vn = (21)

cannot, obviously, be negative.

5.1.     

For each selected value of the structural parameter m, the natural frequencies are given
by the values of p and q which simultaneously satisfy the equations of the system (15) or
those of the system (16). By dividing the first of these equations by the second and after
some algebraic manipulations, one obtains

q=−p(A3B)/(C3D), (22)

where the minus sign refers to system (15), while the plus sign refers to system (16). It may
be noticed that this equation is independent of m and the couples ( p, q) which are its
solutions represent all the admissible solutions of the frequency equation (14). By selecting
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Figure 2. Evaluations of admissible solutions.

any value of p and taking into account that q cannot be negative, these couples may be
obtained by the intersection of the straight line

f(q)= q, (23)

and the curve

g(q)=−p(A3B)/(C3D). (24)

For example, some admissible solutions are evaluated in Figures 2(a) and 2(b) for some
values of p.

In the plane p–q such couples describe a countable infinity of curves of which the first
five are reported in Figure 3. Each of them refers to a natural frequency. For each point
of these curves the corresponding m may be derived from any of the two equations of the
system (15) or of the system (16). For example, considering the first equation, one obtains

m=(A3B)/q. (25)

It should be noticed that the points of each curve are in a one-to-one correspondence with
the values of m in the interval [0, a]. In particular, the points which lie on the p-axis are
related to the values m=0 and m=a of the structural parameter. For each curve, the
smaller value coincides with a dimensionless natural frequency, pss , of the simply supported
beam, while the larger one is associated with the frequency, pcc , of the beam with clamped
ends. In fact, as can easily be proved, the frequency equations of the simply supported
beam and of the beam with clamped ends may be obtained as limiting cases from equation

Figure 3. Admissible solutions of the frequency equation for the first five natural frequencies.
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Figure 4. Admissible solutions of the frequency equation for the first natural frequency: detail in close
proximity to the first natural frequency of the beam without dampers.

(14) for m:0 and for m:a. Moreover, all of the other points correspond to distinct values
of m within the interval [0, a]. It may also be noticed that, for all the curves but the first
one, as m increases from zero to infinity p increases from pss to pcc .

For the first natural frequency the curve presents a different trend, as is shown by
Figure 4. As m increases from zero, at first p decreases, attaining its minimum values,
pmin =9·848149, for m=0·17027. Subsequently, for mq 0·17027, p increases monotonically
up to pcc .

The straight line f(q) and the curve g(q) have, therefore, only one intersection in the
interval ]pss , pcc ], as may be seen in Figure 2(a). For the first natural frequency there are
two intersections in the interval ]pmin , pss ]; see Figure 2(b). The first one refers to a value
of m within the interval 0E mQ 0·17027, while the second one to a value of m within the
interval 0·17027Q mQ 0·21934. Therefore, for any frequency and for any value of the
structural parameter m, an interval is defined in which p must stay. Because in this interval
the frequency equation has only one solution, this can easily be found by means of a
bisection procedure. For the first frequency, the actual value of the structural parameter
m decides whether pss is the upper bound pu or the lower bound pl for p. For mQ 0·17027,
then, it is pl = pmin =9·848149 and pu = pss = p2, while for mq 0·17027 it may be set to
pl = pmin and pu = pcc . For all higher frequencies it is pl = pss and pu = pcc . A trial value for
p may be chosen as

p̂=( pl + pu )/2 (26)

and the corresponding value q̂ of q is evaluated through the intersection method previously
described. The value m̂ of m, corresponding to the couple ( p̂, q̂) through equation (25), may
be either larger or lower than the given m. For the first frequency, if m̂q m then pu = p̂
if mq 0·17027 or pl = p̂ if mQ 0·17027; otherwise, if m̂Q m then pl = p̂ if mq 0·17027 or
pu = p̂ if mQ 0·17027. For all higher frequencies, it is pu = p̂ if m̂q m or pl = p̂ if m̂Q m.
In this way, new upper and lower bounds are iteratively defined for p which, therefore,
may be evaluated to the required degree of accuracy. The procedure will be terminated
when

2( pu − pl )/( pu + pl )Q e, (27)

where e is the permissible error.
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6. NATURAL MODES OF VIBRATION

Natural modes of vibration are derived directly from the solution of the beam equation
and are of the form

fn (z)=A1n sin bnz+A2n cos bnz+A3n sinh bnz+A4n cosh bnz, (28)

where z is the dimensionless spatial co-ordinate z/L. The integration constants An are given
by the expressions

A1n =1, A2n =
imbn (sin bn −sinh bn )

g
, A3n =

−2 sin bn +imbn (cos bn −cosh bn )
g

,

(29a–c)

A4n =−A2n , g=2 sinh bn −imbn (cos bn −cosh bn ), (30a, b)

obtained by applying the boundary conditions

vA =0, vB =0, MA =−ivc8A , MB =−ivc8B . (31a–d)

It is worth noticing that the modes of vibration are complex and occur in conjugate pairs.
One set of modes corresponds to the positive values of pn , while the conjugate set
corresponds to the negative ones.

7. ORTHOGONALITY CONDITIONS

The equations of motion for modes n and m are written as

EJf2n −v2
nmfn =0, EJf2m −v2

mmfm =0. (32, 33)

By multiplying the first by fm and the second by fn and integrating between 0 and L, one
obtains

g
L

0

EJf2n fm dz−v2
n g

L

0

mfnfm dz=0,

g
L

0

EJf2m fn dz−v2
m g

L

0

mfnfm dz=0. (34, 35)

By integrating by parts and applying the boundary conditions, the previous equations may
be written as

g
L

0

EJf0n f0m dz+ivnc[f'n (0)f'm (0)+f'n (L)f'm (L)]−v2
n g

L

0

mfnfm dz=0, (36)

g
L

0

EJf0n f0m dz+ivmc[f'n (0)f'm (0)+f'n (L)f'm (L)]−v2
m g

L

0

mfnfm dz=0. (37)

Subtraction of equation (36) from equation (37) provides

(v2
n −v2

m ) g
L

0

mfnfm dz−ic(vn −vm )[f'n (0)f'm (0)+f'n (L)f'm (L)]=0, (38)
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which, for vn $vm , gives the first orthogonality condition

(vn +vm ) g
L

0

mfnfm dz−ic[f'n (0)f'm (0)+f'n (L)f'm (L)]=0. (39)

By subtracting equation (36) multiplied by vm from equation (37) multiplied by vn , one
obtains

(vn −vm )vnvm g
L

0

mfnfm dz+(vn −vm ) g
L

0

EIf0n f0m dz=0, (40)

which, for vn $vm , leads to the second orthogonality condition

vnvm g
L

0

mfnfm dz+g
L

0

EIf0n f0m dz=0. (41)

8. MODAL DAMPING FACTORS

By setting sn =ivn , the orthogonality conditions become

(sn + sm ) g
L

0

mfnfm dz+ c[f'n (0)f'm (0)+f'n (L)f'm (L)]=0, (42)

snsm g
L

0

mfnfm dz−g
L

0

EIf0n f0m dz=0. (43)

Since to each eigenvalue sn there corresponds the conjugate one s̄n , by taking sm = s̄n and
by noticing that sn + s̄n =−2jn =vn = and sns̄n = =vn =2, it follows that

=vn =2 =
g

L

0

EI =f0n =2 dz

g
L

0

m =fn =2 dz

=
kn

mn
, 2jn =vn ==

c[=f'n (0) =2 + =f'n (L) =2]

g
L

0

m =fn =2 dz

=
cn

mn
. (44, 45)

Therefore, the damping mechanism may be idealized as a set of modal viscous dampers
having a damping constant cn = c[=f'n (0) =2 + =f'n (L) =2]. As a consequence, it is possible to
define the modal damping factors jn by equation (45).

9. COMPLEX MODE SUPERPOSITION METHOD

In the following sections the complex mode superposition method [1–4] for the
dynamical analysis of the system under a transversal motion of both ends will be presented.
At first, the modal impulsive response functions will be derived. Then these functions will
be used to evaluate the response to a general seismic motion in the time and frequency
domains.
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9.1.    

In the case of an impulsive transverse acceleration, acting at both ends simultaneously,
the equation of motion takes the form

EJv1(z, t)+mv̈(z, t)=−mId(t), (46)

where I= f0+

0− üg (t) dt is the acceleration impulse and d(t) is Dirac’s delta function. In the
mode superposition method, the response in terms of displacement can be expanded as
a linear combination of modes of vibration as

v(z, t)= s
a

n=1

yn (t)fn (z). (47)

In this case, unlike the classical modal analysis, the vibration modes fn (z) are complex
functions of the spatial co-ordinate z and the principal co-ordintates yn (t) are complex
functions of time t. Due to the impulsive nature of the excitation, the principal co-ordinates
take the form

yn (t)=Cn exp {ivnt}, (48)

which imply

ẏn (t)= ivnyn (t), ÿn (t)=−v2
nyn (t). (49a, b)

By using the eigenfunction expansion, the equation of motion becomes

s
a

n=1

[EJyn (t)f2n (z)+mÿn (t)fn (z)]=−mId(t). (50)

Multiplication by fm (z) and integration between 0 and L leads to

s
a

n=1 $yn (t) g
L

0

EJf2n (z)fm (z) dz+ ÿn (t) g
L

0

mfn (z)fm (z) dz%=−Id(t) g
L

0

mfm (z) dz. (51)

Integrating by parts and applying the boundary conditions, one obtains

s
a

n=1 6yn (t)$ivnc(f'n (0)f'm (0)+f'n (L)f'n (L))+g
L

0

EJf0n (z)f0m (z) dz%
+ ÿn (t) g

L

0

mfn (z)fm (z) dz7=−Id(t) g
L

0

mfm (z) dz. (52)

Upon making use of the orthogonality condition (39), the previous equation becomes

s
a

n=1 6yn (t)$ivnc(f'n (0)f'm (0)+f'n (L)f'm (L))−vnvm g
L

0

mfn (z)fm (z) dz%
+ ÿn (t) g

L

0

mfn (z)fm (z) dz7=−Id(t) g
L

0

mfm (z) dz. (53)
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By using relationships (49) between the principal co-ordinates and their derivatives, after
some algebraic manipulations, the following equation is found:

s
a

n=1 6$−ic(f'n (0)f'm (0)+f'n (L)f'm (L))+ (vn +vm ) g
L

0

mfn (z)fm (z) dz% ÿn (t)
vn 7

=−Id(t) g
L

0

mfm (z) dz. (54)

It may be noted that, by applying the orthogonality condition (39), the expression in square
brackets vanishes for vn $vm . Therefore the summation in the two previous equations
reduces to only one term, making it possible to decouple the equations of motion which
take the form

2M
 nÿn (t)+C
 nÿn (t)=−L
 nId(t), n=1, 2, . . . , (55)

where

L
 n =g
L

0

mfn (z) dz, M
 n =g
L

0

mf2
n (z) dz, C
 n = c(f'2n (0)+f'2n (L)). (56a–c)

Integration of these equations in the time interval [0−, 0+] leads to

2M
 nẏn (0+)+C
 nyn (0+)=−L
 nI, (57)

from which the constants Cn are obtained:

Cn =−

I g
L

0

mfn dz

2ivn g
L

0

mf2
n dz+ c(f'2n (0)+f'2n (L))

= IBn . (58)

The complex modal impulse response function may then be written as

hc
n (z, t)=Bnfn (z) exp {ivnt}, (59)

but the dynamic response can be evaluated more conveniently by using real algebra. This
purpose can easily be achieved by summing each modal contribution to its conjugate one:
i.e.,

hr
n (z, t)=2 Re [Bnfn (z) exp {ivnt}]. (60)

As a consequence, every modal impulsive response function is real and includes the
contributions of both the mode and its conjugate. Although this function is formally real,
it is still necessary to use complex algebra for its evaluation. However, by defining the real
functions

bn (z)=2 Re [Bnfn (z)], gn (z)=2 Im [Bnfn (z)], an (z)= jnbn (z)−z1− j2
ngn (z),

(61a–c)

the modal impulse response function may be expressed in terms of real algebra as

hr
n (z, t)= an (z) =vn =hn (t)+ bn (z)h� n (t), (62)
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where

hn (t)= (1/vDn ) exp{−jn =vn =t} sin vDnt (63)

represents the impulse response function of a single-degree-of-freedom linear viscous
system with natural frequency =vn =, damping ratio jn and damped frequency
vDn = =vn =z1− j2

n .

9.2.      

By using the impulse response function (62), the dynamic response to a general ground
motion may be obtained according to the modal superposition method as

v(z, t)= s
a

n=1 g
t

0

v̈g (t)hr
n (z, t− t) dt, (64)

where the unitary impulse has been replaced by I= v̈g (t) dt and the loading history has
been divided into a sequence of impulses in the standard way of dynamic analysis. For
computational purposes it is convenient to express the dynamic response in terms of
response integrals as

v(z, t)= s
a

n=1

[an (z)Vn (t)+ bn (z)D� n (t)], (65)

where

Vn (t)= =vn =Dn (t)= =vn = g
t

0

v̈g (t)hn (t− t) dt, D� n (t)=g
t

0

v̈g (t)h� n (t− t) dt. (66, 67)

9.3.     

When the ground motion is harmonic, the dynamic response may still be evaluated by
means of equation (65), but the response integrals may be obtained in closed form as

Dn (t)=
exp{iv̄t}−[cos vDnt+(jn /z1− j2

n +iv̄) sin vDnt] exp{−jn =vn =t}
=vn =2 − v̄2 + i2jn =vn =v̄

v̈g0, (68)

D� n (t)= {iv̄ exp{iv̄t}+[vDn sin vDnt+ jn =vn =cos vDnt−(jn /z1− j2
n +iv̄)

× (vDn cos vDnt− jn =vn =sin vDnt)] exp{−jn =vn =t}}
v̈g0

=vn =2 − v̄2 + i2jn =vn =v̄
. (69)

The steady-state response may then be evaluated by using the expressions

Dn (v̄)=
v̈g0

=vn =2 − v̄2 + i2jn =vn =v̄
, D� n (v̄)=

iv̄v̈g0

=vn =2 − v̄2 + i2jn =vn =v̄
, (70, 71)

which are obtained by removing the transient part from the response integrals (68) and
(69).

10. NUMERICAL APPLICATIONS

The aim of the numerical applications reported here is to illustrate the main results
derived in this paper. First of all, the results of a parametric study, which show the
variation of natural frequencies as functions of the structural parameter m, are presented.
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Figure 5. The real part (Re), imaginary part (Im) and modulus (=v =) of the first natural frequency as functions
of the structural parameter m. v1ss =first natural frequency of the simply supported beam; v1cc =first natural
frequency of the beam with clamped ends.

Then, a graphical representation of a few nodal shapes is reported and the complex modal
analysis is finally applied to evaluate the dynamic response to impulsive and harmonic
excitations.

10.1.  

The modulus, the real and the imaginary parts of the first natural frequency are reported
in dimensionless form in Figure 5 for 0E mE 1. It may be noted that the imaginary part,
which is a measure of the amplitude decay of the modal motion, at first increases and
reaches its maximum value for m2 0·33, then it decreases to zero as m:a.

The real part, which has the physical meaning of a damped vibration frequency, remains
approximately constant and slightly smaller than the first natural frequency of the simply
supported beam when m is less than about 0·22. Then it increases and tends asymptotically,
like the modulus, to the value of the corresponding frequency of the beam with clamped
ends.

The imaginary part and the modulus also present the same trend for higher frequencies,
as may be seen from Figures 6 and 7 for the second and third frequencies, respectively.
However, the real part starts to increase from the very beginning with increasing values
of m.

Figure 6. The real part (Re), imaginary part (Im) and modulus (=v =) of the second natural frequency as
functions of the structural parameter m. v2ss =second natural frequency of the simply supported beam;
v2cc =second natural frequency of the beam with clamped ends.
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Figure 7. The real part (Re), imaginary part (Im) and modulus (=v =) of the third natural frequency as functions
of the structural parameter m. v3ss =third natural frequency of the simply supported beams; v3cc =third natural
frequency of the beam with clamped ends.

From Figures 5, 6 and 7, it may be noted that increasing the damping parameter beyond
a certain limit does not lead to an increase in the loss of energy but to a stiffening of the
beam.

10.2.   

As may be noted from the modal impulse response function hn (t), the reduction of a
modal amplitude is related to the modal damping factor jn =vn =, which is actually the
imaginary part of the complex natural frequency vn . The general picture of how this factor
depends on the structural parameter m is given in Figure 8 for the first three modes of
vibration and for 0 E mE 1. It may be seen that the modal amplitude decay factor
increases with the mode order for 0E mE 0·36 approximately.

For me 0·36 these factors practically coincide, showing that the amplitudes of all the
modal contributions decrease at the same rate.

10.3.    

The real and the imaginary parts of the first three modes of vibration are reported in
Figure 9 for m=0·20. It may be noted that the real parts show a remarkable resemblance
to the modes of the simply supported beam. The imaginary parts imply that all points of
the beam vibrate out of phase in each modal contribution. This means that there are no
nodes, i.e., points which do not move, and that the displacements at all points never vanish

Figure 8. Amplitude decay factors for the first three modes as functions of the structural parameter m.
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Figure 9. The real (heavy lines) and imaginary parts (light lines) of the first three modes of vibration of the
system for m=0·20.

simultaneously nor reach their peak values at the same time. The modal shape changes
within each period, but repeats itself with reduced amplitudes in the following periods.

When m tends to infinity the imaginary parts vanish and the real parts coincide with the
modal shape of the beam with clamped ends. For the sake of brevity, graphs showing this
limiting case are not displayed.

10.4.   

The dynamic response to an impulse of transverse acceleration I, acting at both ends
simultaneously, has been evaluated in terms of mid-span displacement and bending
moment for m=0·09. The real and the imaginary parts of the first five frequency
parameters have been reported in Table 1, together with the corresponding values of the
damping factors. It may be noted that, in this case, the first modal damping factor is
approximately 20%.

In Figure 10, the impulse modal response functions for the mid-span displacement, as
defined in section 9.1, are reported for the first three conjugate pairs of vibration modes.
It may be seen that the first modal contribution clearly prevails over the others and that,
due to the dampers, the amplitude of all the displayed functions decays rapidly. In the same
figure is also shown the impulse response function obtained by superposing the first five

T 1

The first five frequency parameters and corresponding damping factors for
m=0·09

Mode p q j (%)

1 9·8608 1·8223 18·18
2 40·7014 7·3241 17·71
3 94·4598 15·7321 16·43
4 172·3820 24·4919 14·07
5 273·0706 31·0518 11·30
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Figure 10. The modal impulse response functions for the mid-span displacement; m=0·09. ——, Modal
impulse response function from the superposition of the first five modal responses.

Figure 11. The modal impulse response functions for the mid-span displacement; m=0·09. ——, Beam with
dampers; –––, beam without dampers.

modal contributions. This same function is also reported in Figure 11, where it may be
compared with the corresponding one for the beam without dampers. A reduction of the
maximum amplitude of about 25% may be clearly noted.

Figure 12. The modal impulse response functions for the mid-span bending moment; m=0·09. ——, Modal
impulsive response function from the superposition of the first five modal responses.
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Figure 13. The modal impulse response functions for the mid-span bending moment; m=0·09. ——, Beam
with dampers; –––, beam without dampers.

Figure 14. The maximum amplitude reduction of the impulse response functions for the mid-span displacement
and bending moment as functions of the structural parameter m. Rmax =maximum response amplitude of the
beam with dampers; Rmax

ss =maximum response amplitude of the beam without dampers.

The mid-span bending moment shows the same trend, as may be seen in Figures 12 and
13. In this case the contribution of the higher modes is more important and the maximum
amplitude reduction, being over 35%, is even more important.

The general picture of the maximum amplitude decrease is reported in Figure 14 for
0E mE 1. It may be noticed that the reduction reaches its maximum value when m2 0·37
for the mid-span displacement and when m2 0·35 for the mid-span bending moment. Such

Figure 15. The ratio between the maximum moment, M, for the beam with dampers and the maximum
mid-span moment, MSS , for the beam without dampers.
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Figure 16. The amplitude of the frequency response function for the mid-span displacement.

Figure 17. The amplitude of the frequency response function for the mid-span bending moment.

a reduction appears to be very high, at about 80% for the displacement and 60% for the
bending moment.

However, it should be noticed that, due to the presence of viscous dampers, together
with the mid-span reduction, a bending moment arises at the ends of the beam. The ratio
between the maximum amplitude of this bending moment and that at mid-span for the
beam without dampers is shown in Figure 15 for 0 E mE 1. The ratio between the
maximum mid-span moments for the beam with and without dampers is also reported in
Figure 15 for the sake of comparison. It may be noticed that as the mid-span moment
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Figure 18. The first peak of the amplitude of the frequency response function for the mid-span displacement
and bending moment.

decreases the end moments increase, but when the mid-span moment attains its absolute
minimum the end moments reach a local minimum.

10.5.   

The amplitude of the frequency response function for the mid-span displacement is
reported in Figure 16 for 0E mE 1. A similar representation for the mid-span bending
moment is given in Figure 17. According to the results previously shown in Figures 5, 6
and 7, the peak amplitudes of both displacement and bending moment move to higher
frequencies for increasing values of m. The two ridges shown in Figures 16 and 17
correspond to the first and the third frequency as the contribution of the second frequency
vanishes, because the excitation motion is symmetrical. The amplitudes of the first peak
of the frequency response functions are reported in Figure 18 for 0E mE 1. It may be
noted that the minimum displacement response is attained for m=0·45, while the
minimum bending moment response occurs for m=0·38.

11. CONCLUSIONS

A numerical procedure for the evaluation of complex frequencies and modes of vibration
of a simply supported beam with two rotational viscous dampers at its ends has been
presented. The orthogonality conditions for decoupling the equation of motion have then
been derived and complex modal analysis has been performed in order to evaluate the
dynamical response to impulsive and harmonic transverse accelerations acting at both ends
simultaneously.

Some numerical applications have pointed out that the dynamic response of structures
designed as simply supported beams, such as bridges and long span roofs, can be
considerably reduced by the use of rotational viscous dampers. An appropriate choice of
the damper constant allows for the maximum reduction of the dynamic response or for
an optimal overall design.
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APPENDIX A

The functions A, B, C and D, introduced in section 4, are given by the relationships

A=
(EL+FL)c−(FL−EI)d

L2 + I2 , B=
(GL+HI)c−(HL−GI)d

L2 + I2 ,

C=
(EL+FL)d+(FL−EI)c

L2 + I2 , D=
(GL+HI)d+(HL−GI)c

L2 + I2 ,

where

c=Re [b]=Xp+zp2 + q2

2
, d=Im [b]=

q

z2( p+zp2 + q2)
,

E=cos d cosh d(sin c cosh c−cos c sinh c)− sin d sinh d(sin c cosh c+cos c sinh c),

F=sin d cosh d(sin c sinh c−cos c cosh c)+ cos d sinh d(sin c sinh c+cos c cosh c),

G=cos d sinh c−sin c cosh d, H=sin d cosh c−cos c sinh d,

I=sin c cos d cosh c sinh d−cos c sin d sinh c cosh d,

L=1−cos c cos d cosh c cosh d−sin c sin d sinh c sinh d.


